

IB Groups, Rings, and Modules // Example Sheet 4

- Let M be a module over a ring R , and let N be a submodule of M .
 - Show that if M is finitely generated then so is M/N .
 - Show that if N and M/N are finitely generated then so is M .
 - Show that if M/N is free, then $M \cong N \oplus M/N$.
- We say that an R -module satisfies condition (N) if any submodule is finitely generated. Show that this condition is equivalent to condition (ACC) : every increasing chain of submodules terminates. Let R be a Noetherian ring. Show that the R -module R^n satisfies condition (N) , and hence that any finitely generated R -module satisfies condition (N) .
- Let M be a module over an integral domain R . An element $m \in M$ is a *torsion element* if $rm = 0$ for some non-zero $r \in R$.
 - Show that the set T of all torsion elements in M is a submodule of M , and that the quotient M/T is *torsion-free*—that is, contains no non-zero torsion elements.
 - What are the torsion elements in the \mathbb{Z} -module \mathbb{Q}/\mathbb{Z} ? In \mathbb{R}/\mathbb{Z} ? In \mathbb{R}/\mathbb{Q} ?
 - Is the \mathbb{Z} -module \mathbb{Q} torsion-free? Is it free? Is it finitely generated?
- Use elementary operations to put $A = \begin{pmatrix} -4 & -6 & 7 \\ 2 & 2 & 4 \\ 6 & 6 & 15 \end{pmatrix} \in M_{3,3}(\mathbb{Z})$ into Smith normal form D .
Check your result using minors. Explain how to find invertible matrices P, Q for which $D = QAP$.
- Work out the Smith normal form of the matrices

$$\begin{pmatrix} 2X-1 & X & X-1 & 1 \\ X & 0 & 1 & 0 \\ 0 & 1 & X & X \\ 1 & X^2 & 0 & 2X-2 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} X^2+2X & 0 & 0 & 0 \\ 0 & X^2+3X+2 & 0 & 0 \\ 0 & 0 & X^3+2X^2 & 0 \\ 0 & 0 & 0 & X^4+X^3 \end{pmatrix}$$
 over $\mathbb{R}[X]$.
- How many abelian groups are there of order 6? Of order 60? Of order 6000?
- Let G be the abelian group with generators a, b, c , and relations $6a + 10b = 0$, $6a + 15c = 0$, $10b + 15c = 0$. (That is, G is the free abelian group on generators a, b, c quotiented by the subgroup generated by the elements $6a + 10b$, $6a + 15c$, $10b + 15c$). Determine the structure of G as a direct sum of cyclic groups.
- Prove that a finitely-generated abelian group G is finite if and only if $G/pG = 0$ for some prime p . Give a non-trivial abelian group G such that $G/pG = 0$ for all primes p .
- Let A be a complex matrix with characteristic polynomial $(X+1)^6(X-2)^3$ and minimal polynomial $(X+1)^3(X-2)^2$. Write down the possible Jordan normal forms for A . What are the invariant factors of the corresponding $\mathbb{C}[X]$ -modules?
- Find a 2×2 matrix over $\mathbb{Z}[X]$ that is not equivalent to a diagonal matrix.
- Let M be a finitely-generated module over a Noetherian ring R , and let f be an R -module homomorphism from M to itself. Does f injective imply f surjective? Does f surjective imply f injective?

Additional Questions

12. A real $n \times n$ matrix A satisfies the equation $A^2 + I = 0$. Show that n is even and A is similar to a block matrix $\begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$ with each block an $m \times m$ matrix (where $n = 2m$).

13. Show that a complex number α is an algebraic integer if and only if the additive group of the ring $\mathbb{Z}[\alpha]$ is finitely generated (i.e. $\mathbb{Z}[\alpha]$ is a finitely generated \mathbb{Z} -module). Furthermore if α and β are algebraic integers show that the subring $\mathbb{Z}[\alpha, \beta]$ of \mathbb{C} generated by α and β also has a finitely generated additive group and deduce that $\alpha - \beta$ and $\alpha\beta$ are algebraic integers.
 Show that the algebraic integers form a subring of \mathbb{C} .

14. Show that the ring $C^\infty([-1, 1])$ of all infinitely differentiable functions $[-1, 1] \rightarrow \mathbb{R}$ (with pointwise operations) is not Noetherian.

15. What is the rational canonical form of a matrix?
 Show that the group $GL_2(\mathbb{F}_2)$ of non-singular 2×2 matrices over the field \mathbb{F}_2 with 2 elements has three conjugacy classes of elements.
 Show that the group $GL_3(\mathbb{F}_2)$ of non-singular 3×3 matrices over the field \mathbb{F}_2 has six conjugacy classes of elements, corresponding to minimal polynomials $X + 1, (X + 1)^2, (X + 1)^3, X^3 + 1, X^3 + X^2 + 1, X^3 + X + 1$, one each of elements of orders 1, 2, 3 and 4, and two of elements of order 7.

16. Let $\mathbb{F}_4 = \mathbb{F}_2[\omega]/(\omega^2 + \omega + 1) = \{0, 1, \omega, \omega + 1\}$, a field with four elements.
 Show that the group $SL_2(\mathbb{F}_4)$ of 2×2 matrices of determinant 1 over \mathbb{F}_4 has five conjugacy classes of elements, corresponding to minimal polynomials $x + 1, (x + 1)^2, (x + \omega)(x + \omega^2), x^2 + \omega x + 1$ and $x^2 + \omega^2 x + 1$.
 Show that the corresponding elements have orders 1, 2, 3, 5 and 5, respectively.

Comments or corrections to dr508@cam.ac.uk